

4f and infinity configuration.

Source

- Each source has a brightness B
- This is a quantity that is fixed!

$$B_{\text{source}} = \frac{P_{\text{tot}}}{A_{\text{tot}} \Omega_{\text{tot}}}$$

- In an optical system we accept only part of this, depending on the system parameters, acceptance (solid) angle Ω_{system} and surface A_{system} .
- The power in the system from our source is

$$P_{\text{system}} = B_{\text{source}} A_{\text{system}} \Omega_{\text{system}}$$

- In our case the surface A are the same in all cases and only the solid angle Ω_{system} changes.

Comparison

- We integrate the intensity over surface and get a power equivalent:

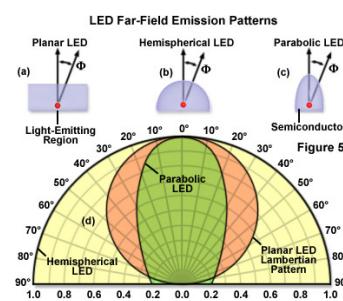
$$I = \frac{P_{\text{system}}}{A_{\text{system}}} \quad P_{\text{system}} = \int I dA$$

- For the 4 system we have
- For the infinity system we have

$$P_{4f} = B_{\text{source}} A_{4f} \Omega_{4f}$$

$$P_{\text{inf}} = B_{\text{source}} A_{\text{inf}} \Omega_{\text{inf}}$$

- Comparing both gives


$$\frac{P_{\text{inf}}}{P_{4f}} = \frac{B_{\text{source}} A_{\text{inf}} \Omega_{\text{inf}}}{B_{\text{source}} A_{4f} \Omega_{4f}} = \frac{\Omega_{\text{inf}}}{\Omega_{4f}}$$

Influence of a source emission

- The source might not emit uniform in all directions. In such cases one needs to consider the power dependence on direction.
- LED has a pronounced dependence ($\cos\Phi$)

$$P_{\text{source}} = \int_{\Omega_{\text{source}}} P(\Phi) d\Phi$$

$$P_{\text{system}} = \int_{\Omega_{\text{system}}} P(\Phi) d\Phi$$

